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We present a model and numerical simulations for the propagation of intense short laser pulses in gases of
atomic clusters. As the pulse propagates through the clusters, they absorb energy, expand and explode. The
clustered gas thus acts as a medium with time dependent effective dielectric constant. A self-consistent model
for the cluster expansion and the laser pulse propagation is developed. Self-focusing of the laser pulse,
coupling of laser energy to clusters and the evolution of the pulse spectrum are studied for a laser-cluster
system with typical laboratory parameters.
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I. INTRODUCTION

A cluster is an aggregate of typically 102–106 atoms(usu-
ally of rare gases for example argon and helium) held to-
gether by Van der Waals forces. Clusters are formed when
the rare gas, under controlled temperature and pressure con-
ditions, is passed into a vacuum chamber. When irradiated by
an intense laser pulse, clusters absorb energy and explode,
leaving behind tenuous plasma. Gases of atomic clusters are
an interesting media for laser-matter interaction with many
applications such as generation of x rays[1] and extreme
ultraviolet (EUV) radiation[2], generation of energetic elec-
trons and ions[3], and high harmonic generation for nonlin-
ear optics studies[4]. Recently, nuclear fusion of colliding
energetic ions from exploding deuterium clusters was also
experimentally demonstrated[5].

Experiments on the interaction of an intense laser pulse
with cluster gas have demonstrated interesting optical effects
such as the self-focusing of the laser pulse[6], strong absorp-
tion of the laser pulse energy[7], and spectral broadening of
the pulse[8]. In order to understand these effects, we need a
model that describes the dynamics of the laser-irradiated
cluster as well as the back reaction on the laser pulse. In this
paper, we develop a self-consistent model for the propaga-
tion of an intense laser pulse in a gas of exploding clusters
that acts as a non-linear medium and study the observed
experimental effects.

The cluster parameter that directly relates to laser propa-
gation is the individual cluster polarizabilityg, defined by

the relationp̂=gÊL wherepstd=Rehp̂e-ivtj is the electric di-

pole moment of the cluster andELstd=RehÊLe−ivtj is the
laser electric field whose frequency isv. The temporal evo-
lution of g determines the time variation of the effective
dielectric constant of the ensemble of clusters given as

s«effdmedium= 1 + 4pncg, s1d

wherenc is the number density of clusters. In an experiment
on the time-resolved explosion dynamics of laser-irradiated
clusters, Kimet al. [15] measured the complex cluster polar-
izability. It is of significance to use an experimentally con-

sistent model of the cluster polarizabilityg for any realistic
simulation of pulse propagation through cluster plasma.

The earliest cluster models[9,10] described the inner-
shell ionization of the cluster atoms, and explained the x-ray
emission for small clusters but were unsuitable for the com-
putation of polarizability. One of the first models of cluster
expansion that enables the calculation of polarizability was
given by Ditmire(see Ref.[11] for details). This model treats
the cluster as a spherical ball of uniform density throughout
the interaction process. Though this model has been very
useful in explaining many aspects of cluster expansion like
high ionization levels, generation of energetic ions, and reso-
nant absorption, it has drawbacks in that it predicts strong
absorption during time intervals much shorter than those
measured in experimental studies[12,13]. Milchberg [14]
proposed the fully hydrodynamic model that allows for tem-
perature and density gradients within the cluster. This gives
results of cluster dynamics consistent with the experiments
measuring the complex transient polarizability of clusters
[15]. The polarizability results from the hydrocode are fur-
ther supported by experiments on scattering and absorption
of intense laser pulses in clustered gas[16,17]. This model,
however, is computationally intense and thus unsuitable for
studies of pulse propagation where effectively many clusters
must be simulated. Also, fluid models are not expected to be
appropriate at intensities of irradiation that are high enough
to create a population of energetic electrons. Alternate to the
fluid approach are the kinetic models that treat electrons and
ions as particles[18–20]. The particle model can include the
effects of energetic particles on the polarizability. However,
it is even more computationally intense than the fluid models
and the predictions for the cluster polarizability coming from
kinetic models have not been fully explored. In addition to
these, there are other fluid and kinetic models that aim to
explain specific aspects of the laser-cluster interactions such
as third harmonic generation[21,22], generation of high
charged states of ions[23], self-focusing of the laser pulse
[24], and coulomb explosion of very small clusters[25].

We propose a model of cluster expansion that retains the
simplifying assumption of a uniform density profile within
the cluster, but with modified cluster parameters. Our model
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generates a temporal polarizability profile consistent with the
hydrodynamic model without sacrificing computational
speed. We couple the uniform density model, thus modified,
to a Gaussian description of the laser pulse and study the
propagation of a laser pulse through a cluster plasma. Our
simulation results explain many experimentally observed ef-
fects like focusing and strong absorption of the laser pulse.
The underlying assumption in our model is that the dominant
non-linearity is the intensity dependent rate of expansion of
the cluster radius[26]. We assume the electrons respond lin-
early to the laser field. Energy is absorbed by the cluster due
to electron-ion collisions. The heated electrons cause the
cluster to expand on a time scale determined by the ion mass.
The quasi-linear modification of the cluster profile and radius
then changes the linear response of the electrons. Thus we
can think of the non-linearity as occurring through the ion
motion. This is in contrast to alternative models[21,22,24]
that emphasize the direct non-linear response of the electrons
in the strong laser fields.

Finally we note that above a threshold intensity the elec-
tron motion becomes highly nonlinear and there is strong
production of energetic electrons. The model presented here
is meant to apply for intensities below this threshold where
the electron distribution remains thermal.

In the next section we present in detail the equations and
assumptions used for simulating the cluster dynamics. Sec-
tion III of this paper describes the modeling of the laser pulse
and the pulse propagation equations. Equilibrium and stabil-
ity of the pulse parameters are considered in Sec. IV. The
results of numerical simulation are presented in Sec. V.

II. CLUSTER MODEL

Perhaps the most basic model for the heating and expan-
sion of atomic clusters in the presence of intense fields is the
uniform density model given by Ditmireet al. [11]. In this
model, the clusters are treated as uniform dielectric spheres
with no temperature or density gradients inside the cluster.
The dynamical variables which describe the cluster are the
(uniform) electron temperature, electron density and ion den-
sity, and radius of the clusterastd.

If the cluster is much smaller than a laser wavelength, the
electric field in and around the cluster can be determined in
the electrostatic approximation. Inside the cluster the electric

field is uniform and is given byEistd=RehÊie
−ivtj where

Êi =
3

«cluster+ 2
ÊL, s2d

andELstd=RehÊLe−ivtj is the laser electric field. The dielec-
tric constant inside the cluster,«cluster, will be determined
mainly by the response of the free electrons and is given by
the Drude model[28],

«cluster= 1 −
vp

2

v2s1 + iv/vd
, s3d

wherevp
2=4pnee

2/me is the plasma frequency,e andme are
the electron charge and mass andv is the electron-ion colli-

sion frequency. For large values of«cluster the electric field is

shielded from inside of the cluster, i.e.,uÊiu! uÊLu. An impor-
tant quantity in determining the evolution of the laser pulse
is the response of the cluster to the laser field, which is
characterized by the cluster complex polarizability,g. This is

defined by the relationp̂=gÊL wherepstd=Rehp̂e−ivtj is the
electric dipole moment of the cluster. For a spherical cluster
of uniform dielectric constant,«cluster, the polarizability of the
cluster is

g =
«cluster− 1

«cluster+ 2
a3, s4d

wherea is the radius of the cluster.
To apply Eqs.(3) and(4), a model for the evolution of the

electron temperature and density in the cluster and the radius
of the cluster is required. The free electron density in the
cluster evolves due to several processes[14]. Initially free
electrons are produced by direct ionization of the cluster at-
oms in the presence of the laser field. Further ionization oc-
curs via electron-ion inelastic collisions, facilitated by the
high density inside the cluster. The free electrons, thus pro-
duced, absorb laser-energy primarily through collisional in-
verse bremsstrahlung process. Finally, the density decreases
as the cluster expands. In our version of the model, these
processes are treated as follows. We will assume that ioniza-
tion occurs instantaneously once the intensity exceeds a cer-
tain threshold. At that time the cluster atoms will be ionized
to a specific stateZ. The electron and ion densities are then
taken to bene=Zni

=ZNa/V whereNa is the number of atoms
andV=4pa3/3 is the volume of the cluster.

The expansion of the cluster is due to the thermal energy
of the heated electrons and is restrained by the inertia of the
ions. If the cluster remains quasineutral the evolution of the
cluster radius can be determined by balancing the rate of
increase of ion kinetic energy,Ki =s2p /5dminia

3ȧ2 against
the rate at which work is done by the electron pressure in
expanding the cluster,

dKi

dt
= Pe

dV

dt
= Pe4pa2da

dt
, s5d

wherePestd is the electron pressure andmi is the ion mass.
The expansion of the cluster thus obeys

d2a

dt2
= 5

Pe

minia
. s6d

The electron pressure is obtained by balancing the rate of
increase of internal energy of electrons against the sources
and sinks of electron energy,

d

dt
S3

2
VPeD = − Pe

dV

dt
+ U̇V, s7d

where U̇ is the rate of energy absorption per unit volume,
given by

U̇ =
9

8p

Ims«d
u« + 2u2

vuÊL
2u. s8d
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The model system(5)–(8) is based on the assumption that
the density and temperature profiles remain flat within the
cluster sr ,ad. This is not true even if one adopts a fluid
model. Recent one-dimensional fluid simulations[14] have
shown that the density profile develops a low-density pedes-
tal, which has a significant effect on the laser electric field
and the rate of energy absorption. Further, if one adopts a
kinetic picture it is found that there is generation of energetic
electrons that are outside the description of the fluid model
[18]. In spite of these shortcomings, the simplicity of the
uniform density model makes it attractive for plasma propa-
gation studies, provided it can replicate the dynamic behav-
ior of the cluster polarizability.

To use the model we adjust parameters so that the time
dependence of the polarizability matches that of calculations
obtained from the fluid code of Ref.[14]. These results for
polarizability have also been compared favorably with ex-
perimental results[15]. The parameters we adjust are the ion
mass and the dependence of the collision frequency on tem-
perature and density. In particular, we assign a mass of 3
atomic units for the ions in the cluster as opposed to the
expected 40 amu of normal argon ions. The modified colli-
sion frequency is given as

v/v =
15

Te
1/4, s9d

whereTe is the electron temperature in electron volts. The
electron temperature is calculated assuming the electrons to
behave as an ideal gas withPe=neTe. These two modifica-
tions attempt to rectify shortcomings of the uniform density
description, as we now describe. From Eq.(4) we note that if
«cluster@1, theng<a3. Thus in the uniform density model
the polarizability is real and determined primarily by the
cluster radius during the initial expansion. The fluid and the
particle simulations show a more complicated picture with
the polarizability depending sensitively on the shape of the
density profile near the critical surface. In the hydromodel
the cluster heating and expansion are primarily determined
by the dynamics of the thin critical density layer, as opposed
to the uniform density model where the whole cluster comes
to resonance at the same time. One could thus argue, that the
evolution of the cluster as a uniform dielectric sphere but
with reduced mass captures this effect, allowing the cluster
to expand more rapidly. This has the effect of allowing the
real part of polarizability to increase more rapidly in time,
thus giving results comparable to the hydrocode.

Adjusting the temperature and density dependence of the
collision rate also affects the imaginary part of the polariz-
ability. If one uses the Spitzer collision rate[29], the uniform
density model tends to give an imaginary part of polarizabil-
ity that is large only during brief times near resonance
s«cluster+2<0d. The fluid simulations, on the other hand, in-
dicate that the absorption occurs for a much larger time pe-
riod due to the resonance at the critical surface. The modified
collision frequency, Eq.(9), allows for this greater absorp-
tion. In particular, it provides a greater rate of collisions than
the Spitzer formula, and the dependencies on density and

temperature are chosen to match the hydrocode results for
which the collective rate of absorption is largely independent
of the collision frequency.

A comparison of the real and imaginary polarizability us-
ing the fluid model and our modified uniform density model
is shown in Fig. 1. In each case a 30 nm cluster was irradi-
ated with a laser pulse(100 fs FWHM, 800 nm wavelength)
for three different peak intensities 531014 W/cm2, 8
31014 W/cm2, and 131015 W/cm2. The basic time evolu-
tion of the polarizability is the same for both the models.
With regards to the optical property of the cluster, the valid-
ity of our model has been verified for the range of laser-
cluster parameters considered in this work. Our simulations
are valid for clusters of initial diameter of the order of a few
hundred Angstroms, and laser pulses of intensity 5
31014 W/cm2–131016 W/cm2 and pulse width of the or-
der of 100 femtoseconds. These values are very typical of
those measured or used in experiments. For parameters out-
side those considered here it is likely that modifications to
the model would be necessary. The agreement between the
two models starts failing as the density within the cluster
falls below the critical density, i.e., as the cluster disas-
sembles. However, except for very long pulse-widths, this
happens after the laser pulse has passed over the cluster and
so is not important from the point of view of pulse propaga-
tion and self-guiding.

Clusters at different radial distances from the axis of
propagation of the pulse will experience different temporal
profiles of laser intensity due to the variation of intensity
with radius. This will lead to a spatially and temporally vary-
ing effective dielectric constant through the variations of po-
larizability. Figure 2 shows a contour plot, in ther −j plane,
of the real (a) and imaginary(b) polarizability for 30 nm
clusters irradiated by laser pulse(800 nm, 100 fs FWHM,
40 mm radial FWHM, 131015 W/cm2). After the clusters
are ionized, the polarizability decreases with increasing ra-
dial distance in the region of rising Resgd. Parts of the pulse
that propagate through this region will be focused. After
Resgd peaks and starts decreasing this trend reverses. The
temporal variation in polarizability is also responsible for
frequency shifts in the pulse spectrum. Specifically, rising
Resgd will lead to redshifts in the spectrum while decreasing
Resgd will cause the spectrum to blueshift. As seen in(b) the
Imsgd rises in magnitude only at a later time within the
pulse. This should lead to a preferential strong absorption of
the pulse tail. These effects are discussed in details when we
present the results of numerical simulations of pulse propa-
gation.

III. LASER PULSE PROPAGATION

In this section we review the derivation of the laser enve-
lope equations and discuss how these equations are com-
bined with the cluster evolution equations of the previous
section. We assume that the cluster gas is tenuous, having a
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small effective dielectric constant. In this case the laser pulse
will evolve slowly as it propagates at nearly the speed of
light. The laser field is then represented by a complex am-

plitude ELsx' ,z,td=RehÊLsx' ,j ,zde−ivjj, wherej= t-z/c is
a time variable in the laser frame. The effective dielectric
constant is given by

« = 1 +d«sx',j,zd = 1 + 4pncg, s10d

wherenc is the density of clusters, andgsx' ,j ,zd is the local
average polarizability of clusters at the pointsx' ,zd and de-
pends on time through the variablej. By average, we imag-
ine that there are many clusters in a small volume whose size
is small compared to the distance over which the laser enve-
lope varies. In doing so we neglect Rayleigh scattering due
to discreteness of the clusters. Finally, while cluster gases
typically contain a distribution of cluster sizes, we will as-
sume for the present that the average polarizability can be
computed based on a single initial cluster size.

Applying the slowly varying envelope approximation, we
can express the evolution of the envelope in terms of the
variablesx', z, j= t−z/c, as

S¹'
2 + k0

2d«eff + 2ik0
]

] z
DÊL = 0, s11d

where k0=v /c. It is important to note that while Eq.(11)
contains only az derivative, the amplitudeÊL and the effec-
tive dielectric constantd«eff both depend on timesjd in ad-
dition to z. The time variation ofd«eff is obtained by inte-
grating the cluster expansion equations witht replaced byj.

Considering that clusters at different transverse locations
experience different laser intensities, the combined system of
equations is complicated. As a first step, in this paper, we
will solve Eq. (11) using the source-dependent expansion
technique, following Ref.[27], in which the field envelope is
expressed in terms of a series of Laguerre-Gaussian func-
tions as

FIG. 1. A comparison of the real and imaginary polarizability for our model(a),(b) and the hydrocode of Milchberg(c),(d). In each case,
a cluster of initial radius 30 nm is irradiated with an 800 nm, 100 fs FWHM laser pulse for three different peak intensities 5
31014 W/cm2 (dashed), 831014 W/cm2 (dotted), and 131015 W/cm2 (solid, dark). The pulse profile is shown in(a) as a thin solid line.
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ÊL = o
m=0,1,2. . .

ÊmLmsXde−s1−iadX/2, s12d

where Êmsj ,zd is the complex amplitude,LmsXd is the La-
guerre polynomial,X=2r2/R2, Rsj ,zd is the spot size, and
asj ,zd is related to the curvature of the wave fronts. The
expression for the field envelope is then substituted in Eq.
(11) and truncated at the lowest order Gaussian mode assum-
ing that the higher order modes are small and can be ne-
glected. Extending the equations derived in Ref.[27] for the
lowest order mode to the case of a complex dielectric con-

stant, and puttingÊ0=Ese
iu we obtain the following equa-

tions to describe the parameters in Eq.(12):

] Es

] z
= − EsS 2

k0

a

R2 + Hi + GiD , s13d

] u

] z
= −

2

k0

1

R2 + Hr + Gr , s14d

] R

] z
=

2

k0

a

R
+ RHi , s15d

and

] a

] z
=

2

k0

1 + a2

R2 − 2sHr − aHid, s16d

where

Gr,i =
k0

2
E

0

`

dXsd«r,ie
−Xd s17d

and

Hr,i =
k0

2
E

0

`

dX„d«r,is1 − Xde−X
…. s18d

Hered«r andd«i are the real and imaginary parts ofd«eff, the
change in dielectric constant determined by the cluster re-
sponse. Equation(13) describes the evolution of the field
amplitude. The first term on the right describes the effect of
diffraction while the second and third describes the effect of
absorption. Equation(14) describes the evolution of the laser
phase,usj ,zd. The j dependence of the phase gives the fre-
quency shift on axis. Here time variations of the polarizabil-
ity will contribute to theHr andGr terms and give frequency
shifts. Equations(15) and (16) describe the evolution of the
spot-sizeRsj ,zd and the phase front curvatureasj ,zd, with
the first term in each equation describing the effect of dif-
fraction. In addition to the diffractive terms, the radial depen-
dence of thed«eff will contribute to focusing and defocusing
of the laser pulse. Ifd«r andd«i are peaked on axis then both
Hr andHi will be positive. The usual focusing effect due to
an on-axis peak ond«r is manifested by theHr term in Eq.
(16). A positive value ofHr causes the phase front curvature
to become negative and leads to focusing through Eq.(15).
There are additional defocusing effects associated withHi. A
positiveHi will cause defocusing in Eq.(15) due to prefer-
ential absorption of energy at smallr and also leads to an
increase in the curvature of the wave front.

We emphasize that the parametersEs, u, R, and a are
functions of both axial distancez and laser frame time coor-
dinatej= t-z/c. Equations(13)–(16) govern the evolution of
these parameters inz with j being present as a parameter.
The evolution of the laser pulse at differentj values is
coupled through equations determining the time dependent
dielectric constantd«effsr ,j ,zd. Basically, these are Eqs.
(6)–(8) with the time derivative replaced according to] /]t
→] /]j. The heating rate in Eq.(8) depends on the intensity
of the laser pulse, which has a Gaussian radial profile with a
time and space varying amplitude and spot size. Solutions of
this coupled system of equations will be explored in the sub-
sequent sections.

IV. EQUILIBRIUM AND STABILITY OF THE
SELF-GUIDED SOLUTION

The focusing properties of the cluster plasma are de-
scribed by the time dependent functionsHr andHi defined by
Eq. (18). These functions are proportional to the cluster den-
sity nc and the time dependent polarizabilityg. The polariz-
ability depends on the properties of the laser pulse through
the heating rate in Eq.(8).

FIG. 2. Contour plot of(a) real and(b) imaginary part of polar-
izability. The ellipse in the center of each plot marks FWHM points.
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We first consider the behavior ofHr andHi when the laser
pulse is specified to have a given energy, duration and spot
size. Specifically we consider the case of a 100 fs FWHM
Gaussian envelope pulse centered atj=0 as in Fig. 1(a). The
time dependence of the polarizability leads to time depen-
dent values of Hr and Hi. Accordingly, through Eqs.
(13)–(16) the pulse parametersEs, u, R, a will evolve in a
time dependent way. Solutions of this process will be pre-
sented in the next section. Here we consider the values ofHr
andHi that are obtained atj=0 fs corresponding to the peak
of the injected pulse. The dependence of these quantities on
spot size and laser power will give insight into the guiding
mechanism that occurs in cluster plasma. The values of the
functionsHr andHi are determined by first assuming that the
radiation field has the following form, consistent with Eq.
(12) truncated at one term,

ELsj,r,zd = Essj,zdeiusj,zd−„1−iasj,zd…r2/R2sj,zd, s19d

where for the moment we assumea andR are constants. We
then solve Eqs.(6)–(8) on a grid inr and compute ther and
j dependent complex polarizabilityg from Eq.(4). A sample
of this is shown in Fig. 2. The perturbed complex dielectric
constantd«=4pncg is inserted in Eqs.(17) and (18), which
are then numerically integrated inr to obtainHr,i andGr,i.

We now consider the focusing of the pulse, which is de-
termined primarily byHr andHi through Eqs.(15) and(16).
Figure 3 shows plots ofHr andHi at j=0 fs versus the spot
size R for a pulse of fixed energys1.92 mJd and assuming
nc=331011 cm−3. The dependence of these curves on radius
will determine the equilibrium and stability of guided states.

We first look for the equilibria by demanding]R/]z=0
and]a /]z=0 in Eqs.(15) and(16). According to Eq.(15), in
equilibrium a=−k0R

2Hi /2, that is, the phase fronts are
slightly curved inwards. However, for the values ofHi indi-
cated in Fig. 3 and for the valuek0=2p /l=7.85

3104 cm−1 we find thata!1. Thus we further simplify our
analysis by neglectingHi and taking the equilibrium to be
a=0, andR=R0 where from Eq.(16) HrsR0d=1/k0R

2. The
quantity s1/k0R

2d is also plotted on Fig. 3 and we note that
there are two possible equilibrium values where theHr and
s1/k0R

2d curves intersect(R=28 mm and R=130mm). We
will show later that only one of these values is stable.

An alternate way of specifying the equilibrium conditions
is to note thatHr is proportional to the cluster densitync.
Thus, for any spot sizeR, we can adjustnc until the equilib-
rium conditions are satisfied. This is shown in Fig. 4 where
the cluster density that will maintain the spot size at a fixed
value is plotted for several values of pulse energy. It can be
seen that for a given pulse energy there is a minimum cluster
density required to have self-guided equilibria. In particular,
for the case of pulse with energy 1.93 mJ(corresponding to a
peak intensity of 131015 W/cm2 for the pulse parameters of
Tab1e I), this minimum cluster density is 4.231010 cm−3.
Also, for a given density there may be two or three equilib-
rium spot sizes.

We now study the stability of small perturbations away
from the equilibrium for our simplified system. We consider
the phase front curvature and spot size to be given bya
=daszd and R=R0+dRszd whereR0 is the equilibrium spot
size. Linearizing Eqs.(15) and (16) yields

]sdRd
] z

=
2

k0

da

R0
, s20d

]sdad
]z

= − S 4

k0R0
3 + 2U ]Hr

] R
U

R=R0

DdR. s21d

Note, we have again neglectedHi assuminga!1. We look
for exponential solutions of the formda and dR,expskzd,
and find

FIG. 3. The quantitiesHrsj=0 fsd (solid) and Hisj=0 fsd
(dashed with cross markers) are plotted atz=0.006 cm. Here the
cluster density set tonc=331011 cm−3 and the spot size of the
pulse was varied from 10mm to 200mm. All other parameters were
initialized to the conditions in Table I. The intersection ofHr with
the 1/k0R0

2 curve(dashed) gives the equilibrium values ofR for the
chosen cluster density.

FIG. 4. Cluster density required for equilibrium of a pulse as a
function of the pulse spot size for three different initial energies
1.93 mJ(dash-dot), 9.65 mJ(dashed), and 19.3 mJ(solid). All other
parameters were initialized to the conditions in Table I. Note that
for a pulse with given initial energy the same cluster density can
occur for two values ofR.
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K2 = −
4

K0R0
4F2 +US R

Hr

]Hr

]R
DU

R=R0

G . s22d

Thus the requirement for stability of an equilibrium is

US2Hr + R
]Hr

]R
DU

R=R0

.0, s23d

where we note thatHr .0 is required for equilibrium. Note
also that this condition does not depend on the cluster den-
sity, only the spot size, pulse energy and pulse duration mat-
ter.

The left-hand side of Eq.(23) is plotted vsR0 for several
pulse energies in Fig. 5. We see that in the 1.93 mJ case
equilibria are unstable for 10mm,R,14 mm and
R.82 mm. Thus the 130mm equilibrium spot size found in
the nc=331011 cm−3 case is unstable, while theR0
=28 mm case is stable according to the simple model.

V. NUMERICAL SIMULATIONS RESULTS

In this section we present the numerical simulation results
for the propagation of laser pulses through a clustered gas
based on the coupled Eqs.(6), (7), and (13)–(18). For the
following numerical simulation results, the initial parameter
values for the cluster and the laser field are given in Table I.
These parameters are similar to those typically seen in the
laboratory. Unless otherwise mentioned the results refer to
quantities atj=0, the center of the laser pulse.

Contrary to the low energy absorption when a tenuous gas
is irradiated by laser, clustered gases absorb laser energy
very efficiently. This has an important impact on the appli-
cations of the laser-cluster interaction process like x-ray pro-
duction and generation of energetic particles. Figure 6 shows
the power within the pulse for different distances of propa-
gation. The laser-cluster system was initialized to the values
in Table I. As seen in the figure, the power is quickly ab-
sorbed at the tail end of the pulse, while the front remains
unattenuated. Absorption of pulse energy is due to the posi-

tive imaginary part of the complex cluster polarizability. The
strong absorption of laser energy at latter times in the pulse
is a consequence of the sharp rise in Imsgd at those times
(see Fig. 2). The front of the pulse, where the intensity is
below the critical intensity for ionization of the cluster,
propagates through unionized clusters and is not absorbed.

Figure 7 shows the evolution in energy and spot size of
the pulse with propagation distancez, for the initial condi-
tions in Table I. We note that by 1.5 cm the pulse has depos-

TABLE I. Initial conditions for numerical simulation of laser
pulse propagation through clustered gas.

Pulse Cluster

Wavelength =800 nm Initial radius =30 nm

Pulse width =100 fs FWHM
Peak Intensity=131015 W/cm2

Threshold intensity
for ionization =131014 W/cm2

Spot size5 40 mm FWHM Degree of ionization =9

Phasesud=0 Ion density
=1.831022 cm−3

=10ncritical

Curvaturesad=−.1284
(determined by equilibrium
conditions atj=0)

Cluster density
=2.1931011 cm−2

Energy=1.93 mJ (determined by
equilibrium conditions

at j=0)

FIG. 5. Stability expressions2Hr +R]Hrl ]RdR=R0 vs spot sizeR
for a laser beam for three different initial pulse energies 1.93 mJ
(dash-dot), 9.65 mJ(dashed), and 1.93 mJ(solid) All other param-
eters initialized to the conditions in Table I. The range ofR over
which the plotted quantity is positive is stable. For example, in the
1.93 mJ case, the region of stability corresponds to 14mm
,R,82 mm andR,8 mm.

FIG. 6. Power within the pulse(initial parameters of Table I) at
z=0 cm, 0.3 cm, 0.6 cm, 0.9 cm, and 1.2 cm. The front of the
pulse, traveling through unionized clusters, does not get absorbed
and hence propagates unattenuated while the trail end(where the
imaginary part of polarizability is high) is strongly attenuated.
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ited 83% of its energy in the gas. After this the pulse energy
changes little. Two measures of the spot size are plotted: the
instantaneous spot size atj=0 and the rms spot size
weighted by the time-dependent pulse power. The spot size
for propagation through vacuum is plotted for comparison
and to illustrate the guiding effect. Both the instantaneous
and RMS spot sizes expand less in clustered gas medium
than in vacuum. The effective Rayleigh length in this case is
seen to be,1.2 cm while that in vacuum is 0.45 cm. The
center of the pulse however, as seen viaRsj=0 fs,zd remains
distinctly focused for more than 1.5 cm. Such self-focusing
has been experimentally observed by Kimet al. [15] where
they focus 7.5 mJ, 800 nm pulses with pulsewidths in the
range 80 fs–1.4 psinto clustered argon.

Next we try to explore the effect of initial energy on the
focusing property of the interaction for a fixed pulse width. A
comparison of the laser beam RMS spot size is plotted in
Fig. 8 for the different initial energies. For this simulation,
pulses of different initial energy(set by varying the peak
initial intensity) were propagated through clustered gas hav-
ing the initial laser-cluster parameters as in Table I but the
cluster density was set to 331011 cm−3 and the initial cur-
vature was set to zero. It is seen, for such a configuration,
that we achieve optimal guiding for intensities around 2
31015 W/cm2. For lower energies, the pulse intensity falls
below the threshold value very soon causing the pulse to
diffract in the medium of unionized clusters. For higher peak
intensities, a larger temporal portion of the pulse faces a
defocusing profile of Resgd, as seen in Fig. 1, causing the
rms spot size to be larger.

A comparison of the energy absorbed versus propagation
distance is plotted for each of these cases in Fig. 9. We note

that the rate of absorption of laser energy increases as we
increase the initial energy. Higher peak intensity results in a
larger value of the imaginary part of polarizabilityg leading
to a higher value ofHi and Gi. These directly lead to an
increased attenuation rate for the laser field amplitude(and
thus energy) via Eq. (13). Moreover, greater peak intensity
causes clusters to ionize and thus absorb laser energy over a
larger radial zone. As the pulse advances, however, a reduced
intensity laser field has lesser potential for ionization and
further absorption. Thus the rate of energy absorption tapers
off.

As the pulse propagates, different parts of the pulse expe-
rience different dielectric constants, due to the time depen-
dence of the cluster polarizabilityg. Thus the pulse picks up
a time-dependent phase leading to local frequency shift or
chirp, Dv. This is given by

Dv = −
] u

] t
s24d

and represents the frequency shifts on axissr =0d. Figures
10(a) and 10(b), respectively, show the variation in the on
axis phase and the chirp within the pulse, at different dis-
tances of propagation. Aroundj=−80 fs, the phase shows a

FIG. 7. Self-guiding of the laser pulse in cluster medium. The
figure shows the spot size at the center of the pulsesj=0 fsd
(dashed with square marker) for propagation through 2.0 cm of
clustered gas for the initial conditions of Table I. The result for
propagation through vacuum(solid with circle markers) is plotted
for comparison. The rms(root mean squared) spot size is also
shown (dashed with diamond markers). The center of the pulse
remains focused for roughly 1.5 cm. The energy within the pulse
(solid with cross markers) is plotted in mJ(right axis). We note that
about 83% of the pulse energy is absorbed by the clusters in 1.5 cm
of propagation, after which the rate of absorption levels off. FIG. 8. rms spot sizes as a function of propagation distance for

pulses with six different initial peak intensities: 531014 W/cm2,
831014 W/cm2, 131015 W/cm2, 231015 W/cm2, 5
31015 W/cm2, and 131016 W/cm2. Here cluster density was set
to nc=331011 cm−3, other initial conditions being those in Table I.
We note that the guiding effect is strongest around peak intensity of
231015 W/cm2. The evolution of spot size for a pulse propagating
in vacuum is plotted for comparison.
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sudden rise, leading to a red shift as seen in the chirp. At this
time, the intensity of the pulse exceeds the threshold inten-
sity causing ionization and a positive jump in the polarizabil-
ity that appears as a frequency redshift. Atz=0.72 cm there
is a sudden kink in phase forj=86 fs. This is reflected in the
chirp as a strong red shift. The position of this kink moves
towards increasingj with z. Also, as seen in Fig. 10(c) the
spot sizeR shows a sharp focusing at the same position
where the kink occurs in phase. This time dependent focus-
ing in the pulse gives rise to the kink in phase and the asso-
ciated redshift.

To understand this focusing we examine the governing
equations more closely. From Eq.(14) we see that the evo-
lution of the phase is governed by three terms—the first
term, which is the diffraction term, and contributions due to
the real polarizability, theHr, and Gr terms. Since all the
three terms are functions of spot sizeR, the variation inR is
significant in understanding the behavior of the phase. Figure
11 shows the evolution of the(a) spot sizesRd, (b) curvature
sad, and (c) phasesud for two different j values( j=86 fs
and j=101 fs) around the region where the kink occurs in
phase. The curve corresponding toj=0 fs is provided for
comparison. The initial pulse parameters were selected so
that thej=0 fs portion of the pulse is in equilibrium and as
seen in Fig. 11 the spot size and curvature atj=0 remain
relatively constant. Other parts of the pulse do not start in an
equilibrium state and the spot size and curvature vary with
distance. Let us consider these nonequilibrium curves. Ini-
tially both Hr andHi are positive while the phase front cur-

vaturea is close to zero. Consequently, the spot sizeR will
increase according to Eq.(15) and a decreases because the
focusing term 2Hr in Eq. (16) is larger than the diffractive
term, 2/sk0R

2d. As the phase front curvature becomes more
negative the rate of increase in spot size decreases and even-
tually the spot size begins to decrease. That is, the pulse
begins to focus. As the spot size decreases, the diffraction
term in Eq.(16) becomes more important and the phase front

FIG. 9. Variation of energy within the pulse with propagation
for pulses of different initial peak intensities: 531014 W/cm2, 8
31014 W/cm2, 131015 W/cm2, 231015 W/cm2, 5
31015 W/cm2, and 131016 W/cm2. Here cluster density was set
to nc=331011 cm−3, other initial conditions being those in Tab1e I.
Pulses with higher initial energy have a higher rate of energy ab-
sorption initially. As the pulse energy gets depleted the rate of ab-
sorption falls.

FIG. 10. (a) Phase,(b) chirp developed,(c) spot size of the
pulse,(d) radially averaged frequency shift, and(e) power weighted
radial averaged frequency shift, atz=0.3 cm, z=0.72 cm, and
0.9 cm (for initial conditions of Table I). The rise in phase atj=
−80 fs is due to ionization and appears in(b) and(d) as a redshift.
The z=0.72 cm curve shows a kink in phase at aroundj=86 fs.
This is due to the sharp focusing of the pulse as seen in(c) and
provides further redshift as seen in(b) and(d). The frequency shift
weighted with power gives the effect of the propagation on the
pulse spectrum.
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curvaturea begins to increase. At the focal point, where the
spot size attains its minimum value the curvature is approxi-
mately zero. After the focal point the curvature and spot size
increase as in simple diffraction. As the spot sizeR passes
through its minimum value at the focal point there is an
abrupt decrease in phase due to the first term in Eq.(14).
This decrease in phase occurs earlier for the portion of the
pulse at j=86 fs than for the portion of the pulse atj
=101 fs, as is shown in Fig. 11(c). Consequently, the phase
as a function ofj at fixedz shows a sharp increase at thej
location separating portions of the pulse that have already
focused from those which are yet to focus.

The on-axis frequency shiftDv=]u /]j describes the
change in the frequency components atr =0. In the previous
example we have seen that the phase aquires a time depen-
dence because of the moving focus and the diffractive term,
−2/sk0R

2d in Eq. (14). The abrupt change in phase that oc-
curs as a portion of the pulse passes through a minimum in
spotsize is a linear effect. The same term is responsible for
the Guoy phase shift that occurs when a Gaussian beam is
focused. The pulse’s frequency components are actually
changed due to the time dependence of the phase, the spot
size, and the phase front curvature that occurs due to the time
dependent medium. These different spectral components then
arrive at the axis at different times giving rise to the abrupt
change in the on-axis phase. A quantity which is indicative of
the radially averaged frequency is

DÃsj,zd

= − ImHE
0

`

2pr drE* ] E/] jJYE
0

`

s2pr dr uEu2d.

s25d

Using Eq.(19) we find this to be given by

DÃ = − S ] u

] j
+

R2

2

]

] j
S a

R2DD . s26d

According to Eqs.(14)–(16) this quantity satisfies

]

] z
DÃsj,zd = − S ] Gr

] j
+

2Hr

R

] R

] j
D − HiR

2 ]

] j
S a

R2D .

s27d

The first term on the right side of Eq.(27) describes the
effect if the changing real part of the dielectric constant on
the frequency. We note from Eqs.(17) and (18) that

S ] Gr

] j
+

2Hr

R

] R

] j
D =

ko

2
E

0

`

dXS ] d«r

] j
De−X. s28d

The second term on the right represents the effect of radial
variations in the absorption on the radially averaged fre-
quency shift. A plot ofDÃsj ,zd vs j for different distances
of propagation is shown in Fig. 10(d) for a laser-cluster sys-
tem initialized to conditions in Table I. A redshift in fre-
quency occurs at the time when the cluster ionizes. Also, the
figure indicates a strong red shift at times when the kink
occurs in phase. However, we should note that a high nega-
tive (positive) value of the radial averaged frequency shift
will not translate to a strong red(blue) shift in the pulse
spectrum if the power at that location is very small. Thus a
better measure of the effect on the pulse spectrum would be
given by the radial averaged frequency shift weighted by the
power. This is plotted in Fig. 10(e). It indicates strong red-
shift at time of ionization of clusters and due to the time-
dependent dielectric constant. This should lead the pulse
spectrum to be redshifted. For our pulse of 100 fs FWHM,
there is very little power at the location in the pulse where
the kink occurs. Thus this abrupt change in phase does not
have a strong effect on the pulse spectrum. However, this
effect may become important for pulses of longer duration.
This is yet to be explored.

The pulse spectrum at different distances of propagation,
z=0 cm, 0.3 cm, 0.6 cm, 0.9 cm, and 1.2 cm, is plotted in
Fig. 12. As the pulse propagates it spreads in frequency due
to the temporal behavior of Resgd. A rising Resgd causes a
redshift while decreasing Resgd causes the pulse spectrum to
have a blue shift. Additional redshift occurs due to the de-
velopment of the moving focus described above. Such spec-
tral broadening is also consistent with recently reported ex-
perimental results[8].

VI. CONCLUSION

We have described a self-consistent model for the simu-
lation of laser pulse propagation through a gas of exploding

FIG. 11. Variation with propagation distance of spot size(a),
curvature(b), and phase(c) of the pulse at three different locations
within the pulse( j=0 fs, 86 fs, 101 fs). The moving focus seen in
(a) causes a sharp fall in phase(c).
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clusters. Stability and equilibrium of the system are also
studied. We find that for typical laser cluster parameters there
are multiple equilibria but not all of them will be stable. For
our particular case, we found two sets of parameters that
support equilibria but only one was found to be stable. Also,
there is a minimum required cluster density for equilibrium
of a pulse with fixed energy. For example, in our case of
1.93 mJ pulse, this minimum cluster density was 4.2
31010 cm−3.

Our simulations indicate that starting from an equilibrium
value the laser pulse typically remains focused for distances
of the order of 1.5 cm. The focusing length, however, varies
with the pulse peak intensity(other parameters remaining
constant), and for the system considered we obtained the
maximum focusing distance for a pulse of peak intensity 2
31015 W/cm2. There is very efficient coupling of the laser
energy to the clusters, far exceeding that in case of interac-
tion of a laser pulse with a low-density unclustered gas. By
the time the laser propagates 1.5 cm through the clustered
gas more than 80% of its energy is absorbed. The simulations
suggest rapid absorption of energy by the clusters during the
initial part of the propagation and the rate of absorption falls
off with propagation distance. Also, a pulse with higher ini-
tial energy was absorbed much faster than a pulse with lower
energy. This efficient absorption of laser energy by the clus-
ters is an important property with respect to the applications.
The pulse is frequency shifted as it propagates. This is pri-
marily due to the temporal variation in the cluster complex
polarizability leading to a time-varying dielectric constant.
Also as the pulse propagates, it develops a moving focus
reflected as a kink in the on-axis phase. This, along with the
time dependence of polarizability, leads to a redshift in the
pulse spectrum.
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